کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6963506 | 1452287 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-objective environmental model evaluation by means of multidimensional kernel density estimators: Efficient and multi-core implementations
ترجمه فارسی عنوان
ارزیابی مدل چند هدفه محیطی با استفاده از برآوردگرهای تراکم هسته چند بعدی: پیاده سازی کارآمد و چند هسته ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برآورد تراکم هسته چندمتغیره، برآورد تراکم هسته چندمرحلهای، پیاده سازی چند هسته ای، ارزیابی مدل محیط زیست،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
We propose an extension to multiple dimensions of the univariate index of agreement between Probability Density Functions (PDFs) used in climate studies. We also provide a set of high-performance programs targeted both to single and multi-core processors. They compute multivariate PDFs by means of kernels, the optimal bandwidth using smoothed bootstrap and the index of agreement between multidimensional PDFs. Their use is illustrated with two case-studies. The first one assesses the ability of seven global climate models to reproduce the seasonal cycle of zonally averaged temperature. The second case study analyzes the ability of an oceanic reanalysis to reproduce global Sea Surface Temperature and Sea Surface Height. Results show that the proposed methodology is robust to variations in the optimal bandwidth used. The technique is able to process multivariate datasets corresponding to different physical dimensions. The methodology is very sensitive to the existence of a bias in the model with respect to observations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 63, January 2015, Pages 123-136
Journal: Environmental Modelling & Software - Volume 63, January 2015, Pages 123-136
نویسندگان
Unai Lopez-Novoa, Jon Sáenz, Alexander Mendiburu, Jose Miguel-Alonso, Iñigo Errasti, Ganix Esnaola, AgustÃn Ezcurra, Gabriel Ibarra-Berastegi,