کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6963666 1644961 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial neural network modelling in simulation of complex flow at open channel junctions based on large data sets
ترجمه فارسی عنوان
مدل سازی شبکه عصبی مصنوعی در شبیه سازی جریان پیچیده در اتصالات کانال باز مبتنی بر مجموعه داده های بزرگ
کلمات کلیدی
شبکه های عصبی مصنوعی، جریان اتصال کانال باز داده های نماینده، تجزیه و تحلیل میزان حساسیت، عدم قطعیت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
چکیده انگلیسی
The flow characteristics in open channel junctions are of great interest in hydraulic and environmental engineering areas. This study investigates the capacity of artificial neural network (ANN) models for representing and modelling the velocity distributions of combined open channel flows. ANN models are constructed and tested using data derived from computational-fluid-dynamics models. The orthogonal sampling method is used to select representative data. The ANN models trained and validated by representative data generally outperform those by using random data. Sobols' sensitivity analysis is performed to investigate contributions of different uncertainty sources to model performance. Results indicate that the major uncertainty source is from ANN model parameter initialization. Hence an ANN model training strategy is designed in order to reduce the main uncertainty source: models are trained for many runs with random model parameter initializations and the model with the best performance is adopted.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 62, December 2014, Pages 178-187
نویسندگان
, , ,