کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6964612 | 1452311 | 2013 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Managing uncertainty in integrated environmental modelling: The UncertWeb framework
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Web-based distributed modelling architectures are gaining increasing recognition as potentially useful tools to build holistic environmental models, combining individual components in complex workflows. However, existing web-based modelling frameworks currently offer no support for managing uncertainty. On the other hand, the rich array of modelling frameworks and simulation tools which support uncertainty propagation in complex and chained models typically lack the benefits of web based solutions such as ready publication, discoverability and easy access. In this article we describe the developments within the UncertWeb project which are designed to provide uncertainty support in the context of the proposed 'Model Web'. We give an overview of uncertainty in modelling, review uncertainty management in existing modelling frameworks and consider the semantic and interoperability issues raised by integrated modelling. We describe the scope and architecture required to support uncertainty management as developed in UncertWeb. This includes tools which support elicitation, aggregation/disaggregation, visualisation and uncertainty/sensitivity analysis. We conclude by highlighting areas that require further research and development in UncertWeb, such as model calibration and inference within complex environmental models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 39, January 2013, Pages 116-134
Journal: Environmental Modelling & Software - Volume 39, January 2013, Pages 116-134
نویسندگان
Lucy Bastin, Dan Cornford, Richard Jones, Gerard B.M. Heuvelink, Edzer Pebesma, Christoph Stasch, Stefano Nativi, Paolo Mazzetti, Matthew Williams,