کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6965891 | 1452926 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Denoising traffic collision data using Ensemble Empirical Mode Decomposition (EEMD) and its application for constructing Continuous Risk Profile (CRP)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Filtering out the noise in traffic collision data is essential in reducing false positive rates (i.e., requiring safety investigation of sites where it is not needed) and can assist government agencies in better allocating limited resources. Previous studies have demonstrated that denoising traffic collision data is possible when there exists a true known high collision concentration location (HCCL) list to calibrate the parameters of a denoising method. However, such a list is often not readily available in practice. To this end, the present study introduces an innovative approach for denoising traffic collision data using the Ensemble Empirical Mode Decomposition (EEMD) method which is widely used for analyzing nonlinear and nonstationary data. The present study describes how to transform the traffic collision data before the data can be decomposed using the EEMD method to obtain set of Intrinsic Mode Functions (IMFs) and residue. The attributes of the IMFs were then carefully examined to denoise the data and to construct Continuous Risk Profiles (CRPs). The findings from comparing the resulting CRP profiles with CRPs in which the noise was filtered out with two different empirically calibrated weighted moving window lengths are also documented, and the results and recommendations for future research are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Accident Analysis & Prevention - Volume 71, October 2014, Pages 29-37
Journal: Accident Analysis & Prevention - Volume 71, October 2014, Pages 29-37
نویسندگان
Nam-Seog Kim, Koohong Chung, Seongchae Ahn, Jeong Whon Yu, Keechoo Choi,