کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6973510 | 1453276 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting the frequency of abnormal events in chemical process with Bayesian theory and vine copula
ترجمه فارسی عنوان
پیش بینی فراوانی رویدادهای غیر طبیعی در فرآیند شیمیایی با تئوری بیزی و مقابله با انگور
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
چکیده انگلیسی
Chemical accidents, such as an explosion, are of low frequency and high consequence (e.g. casualties, significant economic losses, pollution). Due to the shortage of accident data, recently, precursor data have received much attention in chemical risk analysis. Usually, in chemical processes, an abnormal event can be seen as a precursor, which can propagate into near-miss, incident or even accident. The abnormal event frequency (AEF) is defined as the number of abnormal events in a time interval, which can be an early indicator of risk. In this paper, an AEF predicting model based on Bayesian theory and D-vine copula is proposed. Generally, a chemical process is managed in shifts by several teams. The AEFs vary with different experience and operational skills of the operator teams. Furthermore, the previous operating team has an effect on the following operator teams and the effects are asymmetric between two teams, hence, D-vine copula is employed to describe the dependence with much flexibility. Finally, the proposed method is applied to a case study of 4-group-3-shift, and the simulation result shows that it has a better performance compared to conventional approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Loss Prevention in the Process Industries - Volume 32, November 2014, Pages 192-200
Journal: Journal of Loss Prevention in the Process Industries - Volume 32, November 2014, Pages 192-200
نویسندگان
Cheng Lv, Ziyang Zhang, Xiang Ren, Shaojun Li,