کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7007145 1455164 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A probabilistic multivariate method for fault diagnosis of industrial processes
ترجمه فارسی عنوان
یک روش چند متغیره احتمالی برای تشخیص خطا در فرایندهای صنعتی
کلمات کلیدی
تشخیص گسل، تشخیص گسل، فرآیندهای غیر خطی، کپی گواسی چند متغیره،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تصفیه و جداسازی
چکیده انگلیسی
A probabilistic multivariate fault diagnosis technique is proposed for industrial processes. The joint probability density function containing essential features of normal operation is constructed considering dependency among the process variables. The dependence structures are modelled using Gaussian copula. The Gaussian copula uses rank correlation coefficients to capture the nonlinear relationships between process variables. For real-time monitoring, the probability of each online data samples is computed under the joint probability density function. Those samples having probabilities violating a predetermined control limit are classified to be faulty. For fault diagnosis, the reference dependence structures of the process variables are first determined from normal process data. These reference structures are then compared with those obtained from the faulty data samples. This assists in identifying the root-cause variable(s). The proposed technique is tested on two case studies: a nonlinear numerical example and an industrial case. The performance of the proposed technique is observed to be superior to the conventional statistical methods, such as PCA and MICA.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Research and Design - Volume 104, December 2015, Pages 306-318
نویسندگان
, , ,