کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
701407 | 1460820 | 2006 | 5 صفحه PDF | دانلود رایگان |

Nanocrystalline diamond (NCD) coatings were grown by the hot-filament chemical vapour deposition (HFCVD) method on hydrogen plasma pretreated silicon nitride (Si3N4) substrates. The friction and wear behaviour of self-mated NCD films, submitted to unlubricated sliding and high applied loads (up to 90 N), was assessed using an oscillating ball-on-flat configuration in ambient atmosphere. The reciprocating tests revealed an initially high friction coefficient peak, associated to the starting surface roughness of NCD coatings (Rq = 50 nm). Subsequently, a steady-state regime with low friction coefficient values (0.01–0.04) sets in, related to a smoother (Rq = 17 nm) tribologically modified surface. A polishing wear mechanism governing the material loss was responsible for mild wear coefficients (k ∼ 10− 7 mm3 N− 1 m− 1). The hydrogen etching procedure notably increased the film adhesion with respect to untreated surfaces as demonstrated by the high threshold loads (60 N; 3.5 GPa) prior to film delamination.
Journal: Diamond and Related Materials - Volume 15, Issues 11–12, November–December 2006, Pages 2024–2028