کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
702488 | 1460823 | 2005 | 4 صفحه PDF | دانلود رایگان |

An overview of the application of crystal growth fundamentals in the high pressure–high temperature production of diamond by solvent/catalyst technique is presented. The process, also called temperature gradient process, makes use of a molten catalyst to dissolve carbon from a source (graphite or diamond powder) and transport the dissolved carbon to a growth site where they precipitate on a diamond seed. The pressure and temperature requirements for the process are generally around 5.0–6.5 GPa and 1300–1700 °C, depending on the chemistry of the solvent used and the desired crystal geometry. In spite of major progress in the science and technology of diamond growth, large scale commercial production of diamonds single crystals for jewelry or electronic applications has not been feasible until recently. This has been mainly due to the substantial cost associated with the presses needed, and the difficulties in controlling the growth parameters and catalyst chemistry. The recent developments in the commercial production of diamond single crystals utilizing the Split Sphere pressurization apparatus are discussed.
Journal: Diamond and Related Materials - Volume 14, Issues 11–12, November–December 2005, Pages 1916–1919