کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
702949 1460816 2009 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational investigation of the mechanical properties of nanomaterials
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Computational investigation of the mechanical properties of nanomaterials
چکیده انگلیسی

The mechanical responses of carbon nanotubes are examined using classical molecular dynamics simulations. Several different types of nanotubes are considered, including pristine single-walled tubes that are empty, filled with fullerenes to form peapods, filled with other nanotubes to form multi-walled tubes, or chemically functionalized. In addition, the responses of single-walled nanotubes with wall vacancies are considered. The results show how the bending force of filled nanotubes increases relative to the bending force of empty nanotubes and indicates how these increases come about. In addition, the simulations reveal the way in which the magnitude of these increases depend on the type of filling material and, in the case of multi-walled tubes, the number of inner tubes. These simulations further illustrate the way in which the inner nanotubes support higher external loads than the fullerenes in cases when the outer nanotubes are identical. The results also indicate that both the bending and buckling forces depend on temperature and the reasons for this dependence are discussed. Lastly, the simulations demonstrate the way in which the introduction of vacancy defects and covalently bound functional groups to the nanotube walls degrades the nanotubes' mechanical properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Diamond and Related Materials - Volume 18, Issues 2–3, February–March 2009, Pages 438–442
نویسندگان
, ,