کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
703164 | 891128 | 2006 | 6 صفحه PDF | دانلود رایگان |

Diamond-like carbon (DLC) films doped with different silicon contents up to 11.48 at.% were fabricated by plasma immersion ion implantation and deposition (PIII-D) using a silicon cathodic arc plasma source. The surface chemical compositions and bonding configurations were determined by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results reveal that the sp3 configuration including Si–C bonds increases with higher silicon content, and oxygen incorporates more readily into the silicon and carbon interlinks on the surface of the more heavily silicon-doped DLC films. Contact angle measurements and calculations show that the Si-DLC films with higher silicon contents tend to be more hydrophilic and possess higher surface energy. The surface states obtained by silicon alloying and oxygen incorporation indicate increased silicon oxycarbide bonding states and sp3 bonding states on the surface, and it can be accounted for by the increased surface energy particularly the polar contribution.
Journal: Diamond and Related Materials - Volume 15, Issue 9, September 2006, Pages 1276–1281