کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
703622 | 891148 | 2007 | 5 صفحه PDF | دانلود رایگان |

The surface morphology of disordered carbon films grown by nanosecond pulsed laser ablation of graphite is reviewed. It is shown that the presence of a background gas can have a profound effect on the plume of material ejected during ablation. At low pressures smooth films are produced but at higher pressures rough films with an evolution from a nodular morphology to a large area cluster-assembled morphology occurs. The surface morphology changes with increasing background pressure as a result of collisions, which reduce the kinetic energy of the ejected material and allow for cluster formation within the plume. It is shown that the energy of some of the carbon ablated species in vacuum can exceed 100 eV. The nature of the species present in the plume is discussed in terms of electron–ion recombination and impact ionisation/excitation. The cluster-assembled films are shown to be useful as a scaffold for supporting metal nanoparticles to produce substrates for surface enhanced Raman spectroscopy.
Journal: Diamond and Related Materials - Volume 16, Issue 10, October 2007, Pages 1777–1781