کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
704469 1460932 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fault classification and location using HS-transform and radial basis function neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Fault classification and location using HS-transform and radial basis function neural network
چکیده انگلیسی

A new approach for protection of transmission lines has been presented in this paper. The proposed technique consists of preprocessing the fault current and voltage signal sample using hyperbolic S-transform (HS-transform) to yield the change in energy and standard deviation at the appropriate window variation. After extracting these two features, a decision of fault or no-fault on any phase or multiple phases of the transmission line is detected, classified, and its distance to the relaying point found out using radial basis function neural network (RBFNN) with recursive least square (RLS) algorithm. The ground detection is done by a proposed indicator ‘index’. As HS-transform is very less sensitive to noise compared to wavelet transform, the proposed method provides very accurate and robust relaying scheme for distance protection.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 76, Issues 9–10, June 2006, Pages 897–905
نویسندگان
, , ,