کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
704485 1460888 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of dynamic energy pricing schemes on a novel multi-user home energy management system
ترجمه فارسی عنوان
تأثیر طرح های قیمت گذاری انرژی پویا بر روی یک سیستم مدیریت انرژی جدید خانه چند کاربره
کلمات کلیدی
مدیریت انرژی خانه، قیمت گذاری در زمان واقعی، زمان استفاده، بار کنترل ساکنان چندگانه، کاهش نرخ بلوک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی


• Monitor and control household appliances based on a combination of energy prices.
• Manage and schedule load priority of multi-users sharing a home and its appliances.
• Results show that HEMS leads to significant reductions in cost and energy consumption.
• Use of the proposed HEMS algorithm leads to minimized consumer comfort degradation.

Energy management systems can play an important role in residential energy usage because of recent rapid progress in home appliance technology coupled with rising populations. Home energy management systems (HEMS) technology can provide a smart and efficient way of optimizing energy usage in residential buildings. In addition, a HEMS can help tackle three major issues facing society. The first is reducing greenhouse gas emissions, which are a major driver of climate change. Secondly, energy usage must be minimized in response to increasing energy prices and demand. Finally, energy wastage depletes non-renewable energy resources. This paper presents a HEMS algorithm that monitors and controls household appliances based on a combination of energy pricing models including time of use (TOU), real time pricing (RTP), inclining block rate (IBR) and multiple inhabitants sharing a home and its appliances. This novel algorithm helps to manage and schedule usage by prioritizing multiple uses with preferred usage patterns. Two different scenarios will be implemented to develop and test the influence of a multiple users and load priority (MULP) on reducing energy consumption, energy cost and greenhouse gas emissions. In the first scenario, TOU pricing and different demand limits are used, while the second scenario focuses on the RTP combined with IBR pricing. Simulation results show that the combination of the MULP algorithm and the RTP pricing model with IBR pricing leads to significant reductions in user payments and total energy consumption.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 125, August 2015, Pages 124–132
نویسندگان
, , ,