کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7052862 1457460 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental investigation on using ferrofluid and rotating magnetic field (RMF) for cooling enhancement in a photovoltaic cell
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Experimental investigation on using ferrofluid and rotating magnetic field (RMF) for cooling enhancement in a photovoltaic cell
چکیده انگلیسی
A new cooling technique for a photovoltaic cell (PVC) system was developed by simultaneous using of rotating magnetic field (RMF) and ferro-nanofluid. In this study, pure deionized water and Fe3O4-water nanofluid with different volume fractions were used as cooling mediums. Results obtained from RMF and ferrofluid were compared with pure water in terms of the average temperature and electrical output of the PV cell versus time till the system reaches a steady-state condition. The influence of the concentration of magnetic nanoparticles (MNPs) (ϕ = 0.01, 0.02, 0.03, 0.04 and 0.05 (w/v)), the rotational speed of magnet (ω) and the magnetic field induction (B = 350, 450, 570, 720 and 880 mT) were investigated. Generally, using RMF and ferrofluid showed higher effect for the cooling enhancement of PV cell compared with using pure water and ferrofluid without magnetic field. Actuation of ferrofluid by RMF enhances the thermal efficiency (ɳ) in the range of 17.8-30%. The electrical power generated in the range of 2.62-3.5 W related to ferrofluid concentration, magnetic field induction and rotational speed of magnets. The effect of ω in RMF on the cooling performance was evaluated and measurable enhancements of ɳ and %P (max) increase were seen. Maximum values of the generated power (3.5 W), percentage of maximum power increase (47.5%) and thermal efficiency (30%) were attained for B = 880 mT, ω = 30 rad/s and ferrofluid concentration of 0.05 (w/v).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 94, May 2018, Pages 32-38
نویسندگان
, , ,