کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
705362 891322 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems
چکیده انگلیسی

This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 81, Issue 1, January 2011, Pages 43–50
نویسندگان
, ,