کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
711142 | 892126 | 2015 | 5 صفحه PDF | دانلود رایگان |

Protein phosphorylation catalyzed by kinases plays essential roles in various intracellular processes. Therefore, the identification of potential relations between kinases and substrates is one of the key areas in post-translational modifications. Although a number of computational approaches have been designed, most existing kinase-substrate relation (KSR) prediction methods only focus on protein sequence information without considering kinase-substrate network. In this paper, we proposed a novel KSR prediction method called HeteSim-S based both substrate sequence similarity and phosphorylation heterogeneous network through HeteSim algorithm, which has been used in previous studies of similar search. Experiment results in kinase-substrate heterogeneous network show that our method can effectively predict kinase-substrate relations with the AUC measure achieving 0.842. Besides, the AUC performance on specific kinases is up to 0.971. The result demonstrates that HeteSim-S can remarkably improve the identification accuracy by incorporating substrate sequence similarity information in kinasesubstrate heterogeneous networks
Journal: IFAC-PapersOnLine - Volume 48, Issue 28, 2015, Pages 17-21