کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
711206 892126 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DO-Based Dynamic Neural Network Identification and Anti-Disturbance Control with Asymmetrical Dead-Zone Constraints*
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
DO-Based Dynamic Neural Network Identification and Anti-Disturbance Control with Asymmetrical Dead-Zone Constraints*
چکیده انگلیسی

This paper is concerned with the problem of neural network identification and anti-disturbance control of a class of complex nonlinear systems with unknown exogenous disturbances and asymmetrical dead-zone constraints. First, together with a disturbance observer (DO) which is designed to estimate unknown exogenous disturbances, the dynamic neural network (DNN) identifier is used to approximate the complex nonlinear systems. It is shown that both the identification errors of dynamic neural networks and the estimation errors of the disturbance observer can converge to zero. Moreover, a new disturbance observer based feedback controller is designed with the Nussbaum gain matrix so as to guarantee the designed DNN identifier to achieve a satisfactory anti-disturbance control performance. Finally, the applicability of the proposed algorithm is validated with simulation results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 48, Issue 28, 2015, Pages 380-385