کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7112556 | 1460884 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fast model predictive control algorithms for fast-switching modular multilevel converters
ترجمه فارسی عنوان
الگوریتم های کنترل پیش فرض کنترل سریع برای مبدل های چندگانه مدولار سریع سوئیچینگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فرکانس سوئیچینگ بالا، کنترل پیش بینی مدل، مبدل چند سطحی مدولار،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
For high-power/voltage systems, particularly for high-voltage direct current (HVDC), one of the most potential converter topologies is the modular mutlilevel converter (MMC). Model predictive control (MPC) is one of the switching methods studied in the literature for MMC to simultaneously achieve the three challenging objectives of (1) following the reference of the current waveform requested by upper-level control, (2) mitigating on circulating current, and (3) regulating capacitor voltages of submodules. Since the MPC models proposed in the literature suffer from high computation burdens making the algorithm not applicable to high-frequency switching MMCs, a binary integer programming based MPC has been proposed in this paper to optimize this multi-objective problem with minimum computing effort. The main contribution of the algorithms proposed in this paper is to significantly reduce the computation expenses by cutting the searching space from millions of feasible solutions to the incredibly low number of “4”, while taking care of the three objectives of MMC control. The performance of the proposed method is evaluated via simulation in MATLAB SimPowerSystems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 129, December 2015, Pages 105-113
Journal: Electric Power Systems Research - Volume 129, December 2015, Pages 105-113
نویسندگان
Vahid Rasouli Disfani, Lingling Fan, Zhixin Miao, Yan Ma,