کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7112794 1460892 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An accurate hybrid intelligent approach for forecasting flicker severity caused by electric arc furnaces
ترجمه فارسی عنوان
یک روش دقیق ترکیبی هوشمند برای پیش بینی شدت سوسو بخشی توسط کوره های قوس الکتریکی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Drastic variations of reactive power consumed by electric arc furnaces (EAFs) often lead to significant voltage fluctuations at the connecting network bus and yield noticeable flickers of lighting devices as well as cause malfunctions of the electrical equipment. If the flicker severity levels are predictable, corrective solutions such as controls of EAF electrodes and reactive power compensators can be developed to mitigate the voltage fluctuations. This paper presents a hybrid approach that combines an improved radial basis function neural network (IRBFNN) and Grey model for the forecast of flicker severity levels. Field measurements are used to train and implement the forecasting model. Test results of ΔV10, short-term flicker severity (Pst) and long-term flicker severity (Plt) obtained by the proposed and five other methods are then under comparisons. Results indicate that more accurate flicker forecast is obtained by adopting the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electric Power Systems Research - Volume 121, April 2015, Pages 101-108
نویسندگان
, , ,