کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
711572 892132 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A kernel based approach for LPV subspace identification
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
A kernel based approach for LPV subspace identification
چکیده انگلیسی

We present a Linear Parameter Varying (LPV) subspace identification method that takes advantage of the recent developments in the Machine Learning community. More specifically, a Radial Basis Function kernel is used to model the predictor’s impulse response of an LPV model and the involved hyperparameters are estimated via a marginal likelihood maximization algorithm. This step is followed by the estimation of the predictor’s impulse response coefficients, evaluated at the training points. Finally, these values are used to estimate the related coefficients of the LPV model. From this point, the algorithm follows the same steps as in the LPV-PBSIDopt algorithm. Simulation results verify that this algorithm can improve the accuracy of the estimated model with respect to the state-of-the-art LPV subspace methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 48, Issue 26, 2015, Pages 97-102