کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7116666 1461207 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-SPF routing algorithm based on ordered semi-group preference algebra
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Non-SPF routing algorithm based on ordered semi-group preference algebra
چکیده انگلیسی
Layer 2 network technology is extending beyond its traditional local area implementation and finding wider acceptance in provider's metropolitan area networks and large-scale cloud data center networks. This is mainly due to its plug-and-play capability and native mobility support. Many efforts have been put to increase the bisection bandwidth in layer 2 network, which has been constrained by the spanning tree protocol (STP) that layer 2 network uses for preventing looping. The recent trend is to incorporate layer 3's routing approach into layer 2 network so that multiple paths can be used for forwarding traffic between any source-destination (S-D) node pair. Equal cost multipath (ECMP) is one such example. However, ECMP may still be limited in generating multiple paths due to its shortest path (lowest cost) requirement. In this paper, we consider a non-shortest-path routing approach, called equal preference multipath (EPMP) based on ordered semi group theory, which can generate more paths than ECMP. In EPMP routing, all the paths with different traditionally-defined costs, such as hops, bandwidth, etc., can be determined equally now and thus they become equal candidate paths. By the comparative tests with ECMP, EPMP routing not only generates more paths, provides 15% higher bisection bandwidth, but also identifies bottleneck links in a hierarchical network when different traffic patterns are applied. EPMP is more flexible in controlling the number and length of multipath generation. Simulation results indicate the effectiveness of the proposed algorithm. It is a good reference for non-blocking running of big datacenter networks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 24, Issue 6, December 2017, Pages 14-23
نویسندگان
, ,