کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
711695 892136 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distributed optimization for multi-task learning via nuclear-norm approximation∗
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Distributed optimization for multi-task learning via nuclear-norm approximation∗
چکیده انگلیسی

We exploit a variational characterization of the nuclear norm to extend the framework of distributed convex optimization to machine learning problems that focus on the sparsity of the aggregate solution. We propose two distributed dynamics that can be used for multi-task feature learning and recommender systems in scenarios with more tasks or users than features. Our first dynamics tackles a convex minimization on local decision variables subject to agreement on a set of local auxiliary matrices. Our second dynamics employs a saddle-point reformulation through Fenchel conjugation of quadratic forms, avoiding the computation of the inverse of the local matrices. We show the correctness of both coordination algorithms using a general analytical framework developed in our previous work that combines distributed optimization and subgradient methods for saddle-point problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 48, Issue 22, 2015, Pages 64-69