| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 7117041 | 1461215 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Joint model of user check-in activities for point-of-interest recommendation
ترجمه فارسی عنوان
مدل مشترک از فعالیت های ثبت نام کاربر برای توصیه های مورد علاقه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی برق و الکترونیک
چکیده انگلیسی
With the rapid development of location-based networks, point-of-interest (POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity (GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 23, Issue 4, August 2016, Pages 25-36
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 23, Issue 4, August 2016, Pages 25-36
نویسندگان
Ren Xingyi, Song Meina, E Haihong, Song Junde,
