کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7123764 | 1461500 | 2016 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An intelligent fault diagnosis model for rotating machinery based on multi-scale higher order singular spectrum analysis and GA-VPMCD
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Feature extraction and class discrimination are two key problems for fault diagnosis of rotating machinery. Firstly, multi-scale higher order singular spectrum analysis (MS-HO-SSA) method is presented and the multi-scale higher order singular spectrum entropy (MSHOSSE) is defined as feature to reveal the non-Gaussian and nonlinear characteristic for the vibration signals from rotating machinery with local faults. Secondly, GA-VPMCD method is presented by combination genetic algorithm (GA) with conventional variable predictive model based class discriminate (VPMCD) approach. Lastly, an intelligent fault diagnosis model based on MS-HO-SSA and GA-VPMCD is put forward and utilized for rotor fault diagnosis. The experimental results show that MS-HO-SSA method is more effective for feature extraction and the GA-VPMCD provides better performance than conventional VPMCD and LSSVM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 87, June 2016, Pages 38-50
Journal: Measurement - Volume 87, June 2016, Pages 38-50
نویسندگان
Songrong Luo, Junsheng Cheng, Ming Zeng, Yu Yang,