کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7123764 1461500 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An intelligent fault diagnosis model for rotating machinery based on multi-scale higher order singular spectrum analysis and GA-VPMCD
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
An intelligent fault diagnosis model for rotating machinery based on multi-scale higher order singular spectrum analysis and GA-VPMCD
چکیده انگلیسی
Feature extraction and class discrimination are two key problems for fault diagnosis of rotating machinery. Firstly, multi-scale higher order singular spectrum analysis (MS-HO-SSA) method is presented and the multi-scale higher order singular spectrum entropy (MSHOSSE) is defined as feature to reveal the non-Gaussian and nonlinear characteristic for the vibration signals from rotating machinery with local faults. Secondly, GA-VPMCD method is presented by combination genetic algorithm (GA) with conventional variable predictive model based class discriminate (VPMCD) approach. Lastly, an intelligent fault diagnosis model based on MS-HO-SSA and GA-VPMCD is put forward and utilized for rotor fault diagnosis. The experimental results show that MS-HO-SSA method is more effective for feature extraction and the GA-VPMCD provides better performance than conventional VPMCD and LSSVM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 87, June 2016, Pages 38-50
نویسندگان
, , , ,