کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7124438 | 1461519 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis
ترجمه فارسی عنوان
نمایندگی ویژگی های فرکانس فشرده با استفاده از حسگر فشرده سازی و کاربردهای آن در تشخیص خطا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سنجش فشاری، نمایش زمان فرکانس زمان، شناسایی ویژگی، پراکنده،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Feature extraction in time-frequency domain is wildly used in fault diagnosis of rotating machines. However, it needs more time and space to store the time-frequency information, which restricts its practical applications, especially for remote health monitoring. A novel parallel FISTA-like proximal decomposition algorithm was proposed for reconstruction of sparse time-frequency representation (TFR) from the limited noisy observations based on the recently developed compressive sensing. The effectiveness of recovering buried sparse signatures was demonstrated by numerical simulations. The proposed method yielded better results than those obtained by the traditional RecPF method. A novel framework for remote machine health condition monitoring was then developed via the proposed algorithm and the advancements in wireless communication. The effectiveness of the new proposed method for the sparse TFR in detecting bearings and gears defects in rotating machines is further verified using many practical cases. These results illustrate the proposed method can well retain TF signatures without clearly artifacts in the recovered TFR using only very limited measurements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 68, May 2015, Pages 70-81
Journal: Measurement - Volume 68, May 2015, Pages 70-81
نویسندگان
Yanxue Wang, Jiawei Xiang, Qiuyun Mo, Shuilong He,