کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7125078 1461532 2014 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of image based Abbott-Firestone curve parameters using machine vision for the characterization of cylinder liner surface topography
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Evaluation of image based Abbott-Firestone curve parameters using machine vision for the characterization of cylinder liner surface topography
چکیده انگلیسی
In this paper, a method is proposed for the evaluation of image based Abbott-Firestone curve parameters aiming to characterize the cylinder bore surface topography using machine vision. Plateau honing experiments are performed to generate sixteen cylinder liners with different surface topographies and the 2-D and 3-D Abbott-Firestone parameters are measured using a stylus instrument and Coherence Scanning Interferometer (CSI), respectively. The images are captured from the corresponding portions of the cylinder liner surfaces using a Charge Coupled Device (CCD) camera connected with different microscopic attachments. The captured images are filtered using a Butterworth high pass filter followed by the adaptation of the double step Gaussian filtering procedure specified by the ISO 13565-1. An Abbott-Firestone curve is constructed by finding the cumulative of the intensity histogram of the filtered images. Five image based parameters are evaluated from the constructed Abbott curve by adapting the procedures presented in ISO 13565-2. The computed image based Abbott-Firestone curve parameters are observed to bear a statistically significant correlation with the measured 2-D and 3-D Abbott-Firestone curve parameters. An artificial neural network (ANN) is trained and tested to arrive at the actual values of the Abbott-Firestone curve parameters using the computed image based feature parameters. The results indicate that the multiple surface topography parameters of the cylinder bore surface could be estimated/predicted with a reasonable accuracy using machine vision technique coupled with ANN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 55, September 2014, Pages 318-334
نویسندگان
, , ,