کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7132560 1461715 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uncertainty quantification in DIC with Kriging regression
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Uncertainty quantification in DIC with Kriging regression
چکیده انگلیسی
A Kriging regression model is developed as a post-processing technique for the treatment of measurement uncertainty in classical subset-based Digital Image Correlation (DIC). Regression is achieved by regularising the sample-point correlation matrix using a local, subset-based, assessment of the measurement error with assumed statistical normality and based on the Sum of Squared Differences (SSD) criterion. This leads to a Kriging-regression model in the form of a Gaussian process representing uncertainty on the Kriging estimate of the measured displacement field. The method is demonstrated using numerical and experimental examples. Kriging estimates of displacement fields are shown to be in excellent agreement with 'true' values for the numerical cases and in the experimental example uncertainty quantification is carried out using the Gaussian random process that forms part of the Kriging model. The root mean square error (RMSE) on the estimated displacements is produced and standard deviations on local strain estimates are determined.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics and Lasers in Engineering - Volume 78, March 2016, Pages 182-195
نویسندگان
, , , , , ,