کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
714671 892189 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust neural-network-based fault detection with sequential D-optimum bounded-error input design
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Robust neural-network-based fault detection with sequential D-optimum bounded-error input design
چکیده انگلیسی

A growing demand for technologically advanced systems has contributed to the increase of the awareness of systems safety and reliability. Such a situation requires the development of novel methods of robust fault diagnosis. The application of the analytical redundancy based methods for system fault detection causes that their effectiveness depends on model quality. In this paper, a new methodology for the improvement of the neural model with a D-optimum sequential experimental design technique combined with outer bounding ellipsoid algorithm is proposed. Moreover, a novel method of robust fault detection against neural model uncertainty and disturbances is developed. Such an approach is used for modelling and robust fault detection of the three-screw spindle oil pump.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC-PapersOnLine - Volume 48, Issue 21, 2015, Pages 434-439