کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7154433 | 1462579 | 2019 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Localized modes in the Gross-Pitaevskii equation with a parabolic trapping potential and a nonlinear lattice pseudopotential
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study localized modes (LMs) of the one-dimensional Gross-Pitaevskii/nonlinear Schrödinger equation with a harmonic-oscillator (parabolic) confining potential, and a periodically modulated coefficient in front of the cubic term (nonlinear lattice pseudopotential). The equation applies to a cigar-shaped Bose-Einstein condensate loaded in the combination of a magnetic trap and an optical lattice which induces the periodic pseudopotential via the Feshbach resonance. Families of stable LMs in the model feature specific properties which result from the interplay between spatial scales introduced by the parabolic trap and the period of the nonlinear pseudopotential. Asymptotic results for the shapes and stability of LMs are obtained for small-amplitude solutions and in the limit of a rapidly oscillating nonlinear pseudopotential. We show that the presence of the lattice pseudopotential may result in: (i) creation of new LM families which have no counterparts in the case of the uniform nonlinearity; (ii) stabilization of some previously unstable LM species; (iii) evolution of unstable LMs into a pulsating mode trapped in one well of the lattice pseudopotential.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 66, January 2019, Pages 194-207
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 66, January 2019, Pages 194-207
نویسندگان
G.L. Alfimov, L.A. Gegel, M.E. Lebedev, B.A. Malomed, D.A. Zezyulin,