کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7154864 1462586 2018 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Supercritical nonlinear parametric dynamics of Timoshenko microbeams
ترجمه فارسی عنوان
دینامیک پارامتر غیر خطی فوق بحرانی میکروب های تیموشنکو
کلمات کلیدی
دینامیک پارامتری فوق بحرانی، میکروبیم تیموشنکو، بار محوری بار زمان، دینامیک غیر خطی،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی
The nonlinear supercritical parametric dynamics of a Timoshenko microbeam subject to an axial harmonic excitation force is examined theoretically, by means of different numerical techniques, and employing a high-dimensional analysis. The time-variant axial load is assumed to consist of a mean value along with harmonic fluctuations. In terms of modelling, a continuous expression for the elastic potential energy of the system is developed based on the modified couple stress theory, taking into account small-size effects; the kinetic energy of the system is also modelled as a continuous function of the displacement field. Hamilton's principle is employed to balance the energies and to obtain the continuous model of the system. Employing the Galerkin scheme along with an assumed-mode technique, the energy terms are reduced, yielding a second-order reduced-order model with finite number of degrees of freedom. A transformation is carried out to convert the second-order reduced-order model into a double-dimensional first order one. A bifurcation analysis is performed for the system in the absence of the axial load fluctuations. Moreover, a mean value for the axial load is selected in the supercritical range, and the principal parametric resonant response, due to the time-variant component of the axial load, is obtained - as opposed to transversely excited systems, for parametrically excited system (such as our problem here), the nonlinear resonance occurs in the vicinity of twice any natural frequency of the linear system; this is accomplished via use of the pseudo-arclength continuation technique, a direct time integration, an eigenvalue analysis, and the Floquet theory for stability. The natural frequencies of the system prior to and beyond buckling are also determined. Moreover, the effect of different system parameters on the nonlinear supercritical parametric dynamics of the system is analysed, with special consideration to the effect of the length-scale parameter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 59, June 2018, Pages 592-605
نویسندگان
, ,