کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7155159 | 1462606 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate localized wave solutions in a network of Hindmarsh-Rose neural model taking into account the long-range diffusive couplings. We show by a specific analytical technique that the model equations in the infrared limit (wave number k â 0) can be governed by the complex fractional Ginzburg-Landau (CFGL) equation. According to the stiffness of the system, we propose both the semi and the linearly implicit Riesz fractional finite-difference schemes to solve efficiently the CFGL equation. The obtained fractional numerical solutions for the nerve impulse reveal localized short impulse properties. We also show the equivalence between the continuous CFGL and the discrete Hindmarsh-Rose models for relatively large network.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 39, October 2016, Pages 396-410
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 39, October 2016, Pages 396-410
نویسندگان
Alain Mvogo, Antoine Tambue, Germain H. Ben-Bolie, Timoléon C. Kofané,