کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7155707 1462623 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical properties of Poincaré recurrences and Afraimovich-Pesin dimension for the circle map
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Statistical properties of Poincaré recurrences and Afraimovich-Pesin dimension for the circle map
چکیده انگلیسی
Statistical characteristics of Poincaré recurrences are studied numerically for the linear and nonlinear circle map with different irrational values of the rotation number. It is first established that the dependence of the minimal Poincaré return time on the size of a return region has several universal properties. The theoretical result for the Afraimovich-Pesin dimension equality αc=1 is confirmed for Diophantine irrational numbers in both the linear and nonlinear circle map. It is shown that the gauge function 1/t cannot be used for Liouvillian numbers. We also show that the set generated in a stroboscopic section of the dynamics of a nonautonomous oscillator possesses the same basic features that are obtained for the circle map.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 22, Issues 1–3, May 2015, Pages 1050-1061
نویسندگان
, , , ,