کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
71619 | 48985 | 2010 | 5 صفحه PDF | دانلود رایگان |

A dual-bed reactor was constructed comprising of a 5%Na2WO4-2%Mn/SiO2 particle catalyst and a 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) over the dual-bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas, on the catalytic performance were investigated. The results indicated that the suggested dual-bed reactor exhibited a good performance for the OCM reaction when the feed gases firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. A CH4 conversion of 38.2% and a C2H4 selectivity of 43.3% could be obtained using the dual-bed reactor with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm. Both the CH4 conversion and C2H4 selectivity have increased by 2.5% and 12.8%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a conventional single-bed reactor and by 12.9% and 23.0%, respectively, as compared with the 4%Ce-5%Na2WO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the dual-bed reactor system has been improved remarkably.
Journal: Journal of Natural Gas Chemistry - Volume 19, Issue 6, November 2010, Pages 600-604