کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7165206 1462882 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Microencapsulation of a fatty acid with Poly(melamine-urea-formaldehyde)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Microencapsulation of a fatty acid with Poly(melamine-urea-formaldehyde)
چکیده انگلیسی
The main purpose of this study is to obtain leakage-free, thermally stable decanoic acid microcapsules (microPCMs) for thermal energy storage applications. Decanoic acid (capric acid) is an environmentally friendly fatty acid since it is obtained from vegetable and animal oils. MicroPCMs were prepared with different capsule wall materials via a one-step in situ polymerization technique. The properties of microencapsulated PCMs have been analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR) spectra analysis and particle size analyzer. The microPCMs prepared using Poly(urea-formaldehyde) (PUF) exhibit higher heat capacities and the microPCMs prepared using Poly(melamine-formaldehyde) (PMF) exhibit higher thermal stabilities. In order to obtain microPCMs with better properties such as suitable latent heat and better heat resistance at high temperatures, we microencapsulated decanoic acid with Poly (melamine-urea-formaldehyde) (PMUF). Furthermore, the effects of surfactants on microPCMs with PMUF were investigated by SEM, a particle size analyzer, DSC, and TGA. The results show that the binary surfactant system was a suitable emulsifier for this process. We determined that the melting temperature was close to 33 °C, the latent heat storage capacity was about 88 J/g, and the mean particle diameter was 0.28 μm for microPCMs with PMUF. We recommend decanoic acid microencapsulated with PMUF for thermally stable and leakage-free applications above 95 °C.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 80, April 2014, Pages 382-390
نویسندگان
, , , ,