کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7188 540 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films
چکیده انگلیسی

We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 32, Issue 31, November 2011, Pages 7831–7838
نویسندگان
, , , , , , ,