کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
71896 49001 2006 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Radial Basis Function Neural Networks-Based Modeling of the Membrane Separation Process: Hydrogen Recovery from Refinery Gases
چکیده انگلیسی

Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Natural Gas Chemistry - Volume 15, Issue 3, September 2006, Pages 230-234