کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
719958 | 1461223 | 2015 | 7 صفحه PDF | دانلود رایگان |

By virtue of an increase in spectral efficiency by reducing the transmitted pilot tones, the compressed sensing (CS) has been widely applied to pilot-aided sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. The researches usually assume that the channel is strictly sparse and formulate the channel estimation as a standard compressed sensing problem. However, such strictly sparse assumption does not hold true in non-sample-spaced multiple channels. The authors in this article proposed a new method of compressed sensing based channel estimation in which an over-complete dictionary with a finer delay grid is applied to construct a sparse representation of the non-sample-spaced multipath channels. With the proposed, the channel estimation was formulated as the model-based CS problem and a modified model-based compressed sampling matching pursuit (CoSaMP) algorithm was applied to reconstruct the discrete-time channel impulse response (CIR). Simulation indicates that the new method proposed here outperforms the traditional standard CS-based methods in terms of mean square error (MSE) and bit error rate (BER).
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 22, Issue 2, April 2015, Pages 31-37