کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7221960 1470385 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of global weak solutions to the kinetic Peterlin model
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence of global weak solutions to the kinetic Peterlin model
چکیده انگلیسی
We consider a class of kinetic models for polymeric fluids motivated by the Peterlin dumbbell theories for dilute polymer solutions with a nonlinear spring law for an infinitely extensible spring. The polymer molecules are suspended in an incompressible viscous Newtonian fluid confined to a bounded domain in two or three space dimensions. The unsteady motion of the solvent is described by the incompressible Navier-Stokes equations with the elastic extra stress tensor appearing as a forcing term in the momentum equation. The elastic stress tensor is defined by Kramer's expression through the probability density function that satisfies the corresponding Fokker-Planck equation. In this case a coefficient depending on the average length of polymer molecules appears in the latter equation. Following the recent work of Barrett and Süli (2018) we prove the existence of global-in-time weak solutions to the kinetic Peterlin model in two space dimensions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 44, December 2018, Pages 465-478
نویسندگان
, , , ,