کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
722645 1461262 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Network traffic classification based on semi-supervised clustering
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Network traffic classification based on semi-supervised clustering
چکیده انگلیسی

The diminished accuracy of port-based and payload-based classification motivates use of transport layer statistics for network traffic classification. A semi-supervised clustering approach based on improved K-Means clustering algorithm is proposed in this paper to partition a training network flows set that contains a huge number of unlabeled flows and scarce labeled flows. The variance of flow attributes is used to initialize clusters centers instead of the random selection of the cluster centers in initialization. Scarce labeled flows are selected to construct a mapping from the clusters to the predefined traffic classes set. The experimental results show that both the overall accuracy and square error (SSE) value of our algorithm present better than those based on normal K-Means algorithm defined in Ref. [5].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 17, Supplement 2, December 2010, Pages 84-88