کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
725096 1461246 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks
چکیده انگلیسی

We address the problem of link prediction in collections of objects connected by multiple relation types, where each type may play a distinct role. While traditional link prediction models are limited to single-type link prediction we attempt here to jointly model and predict the multiple relation types, which we refer to as the link pattern prediction (LPP) problem. For that, we propose a probabilistic latent tensor factorization (PLTF) model and furnish the Bayesian treatment of the probabilistic model to avoid overfitting problem. To learn the proposed model we develop an efficient Markov chain Monte Carlo (MCMC) sampling method. Extensive experiments on several real world multi-relational datasets demonstrate the significant improvements of our model over several state-of-the-art methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 19, Supplement 2, October 2012, Pages 172-181