کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
725329 | 1461255 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Burst feature detection using parameter estimated two-state automaton
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In recent text mining research, there is a trend in analyzing the burst features of specific entity such as a word, a meme or a document in text streams. Such burst features can be efficiently and robustly identified by Kleinberg's two-state automaton model. However, the two parameters of the model, which is manually set, have heavily affected the performance of the model. In this paper, the function of the two parameters is examined, and two algorithms are proposed for the estimation of the two parameters. Experiments with public news corpora prove that our estimation can maximize the reliability of the detection results and remove the noisy burst features effectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 18, Supplement 1, September 2011, Pages 90-96
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 18, Supplement 1, September 2011, Pages 90-96