کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
725615 1461224 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hyperspectral remote sensing images terrain classification in DCT SRDA subspace
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Hyperspectral remote sensing images terrain classification in DCT SRDA subspace
چکیده انگلیسی

Hyperspectral remote sensing images terrain classification faces the problems of high data dimensionality and lack of labeled training data, resulting in unsatisfied terrain classification efficiency. The feature extraction is required before terrain classification for preserving discriminative information and reducing data dimensionality. A hyperspectral remote sensing images feature extraction method, i.e., discrete cosine transform (DCT) spectral regression discriminant analysis (SRDA) subspace method, was presented to solve the above problems. The proposed DCT SRDA subspace method firstly takes DCT in the original spectral space and gets the DCT coefficients of each pixel spectral curve; secondly performs SRDA in the DCT coefficients space and obtains the DCT SRDA subspace. Minimum distance classifier was designed in the resulting DCT SRDA subspace to evaluate the feature extraction performance. Experiments for two real airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral images show that, comparing with spectral LDA subspace method, the proposed DCT SRDA subspace method can improve terrain classification efficiency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 22, Issue 1, February 2015, Pages 65-71