کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
729773 1461502 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimization of micro milling of hardened steel with different grain sizes using multi-objective evolutionary algorithm
ترجمه فارسی عنوان
بهینه سازی میکرو فرزکاری فولاد سخت با اندازه دانه های مختلف با استفاده از الگوریتم تکامل چند هدفه
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی


• The study integrated the LSM based on feed rate, cutting speed, and grain size providing the optimal process parameter.
• A genetic optimization algorithm was used to optimize the micro-milling process.
• The NSGA II algorithm was applied due to its coverage and easily to optimize machining process.
• The feed rate was the most significant factor for minimizing Fy force and Mz Torque.

Modern manufacturing processes need high production rates, low costs, and high product quality. Generally, surface roughness is a good reference to determine the performance in machined products. The use of optimization systems can determine the optimum machining parameters in the machining process, especially in milling operations. The present study integrates the least square model based on feed rate, cutting speed, and grain size with a genetic optimization algorithm to provide the optimal process parameter. The NSGA II algorithm was applied due to its coverage and easily to optimize the micro milling of hardened steel. The responses were Fy Force and Mz Torque. The results show that the feed rate was the most significant factor for minimizing Fy force and Mz Torque.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 85, May 2016, Pages 88–99
نویسندگان
, , , , ,