کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
730112 1461530 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature extraction and classification for detecting the thermal faults in electrical installations
ترجمه فارسی عنوان
استخراج ویژگی و طبقه بندی برای تشخیص گسل های حرارتی در تاسیسات الکتریکی
کلمات کلیدی
تصویر مادون قرمز، استخراج ویژگی، نصب الکتریکی، طبقه بندی، ارزیابی کیفی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی


• Suitable feature selection for thermal fault detection in electrical installation.
• Considering qualitative and quantitative feature extraction.
• Employing MLP neural network and SVM for condition classification.
• Optimal classifier configuration for fault detection.

This paper proposed an effort to investigate the suitability of input features and classifier for identifying thermal faults within electrical installations. The features are extracted from the thermal images of electrical equipment and classified using a multilayered perceptron (MLP) artificial neural network and support vector machine (SVM). In the experiments, the classification performances from various input features are evaluated. The commonly used classification performance indices, including sensitivity, specificity, accuracy, area under curve (AUC), receiver operating characteristic (ROC) and F-score are employed to identify the most suitable input feature as well as the best configuration of classifiers. The experimental results demonstrate that the combination of features set Tmax, Tdelta and DTbg produce the best input feature for thermal fault detection. In addition, the implementation of SVM using radial basis kernel function (RBF) produces slightly better performance than the MLP artificial neural network.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 57, November 2014, Pages 15–24
نویسندگان
, , ,