کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7302 544 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene
چکیده انگلیسی

The goal of this study was to employ nano-graphene for tumor targeting in an animal tumor model, and quantitatively evaluate the pharmacokinetics and tumor targeting efficacy through positron emission tomography (PET) imaging using 66Ga as the radiolabel. Nano-graphene oxide (GO) sheets with covalently linked, amino group-terminated six-arm branched polyethylene glycol (PEG; 10 kDa) chains were conjugated to NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid, for 66Ga-labeling) and TRC105 (an antibody that binds to CD105). Flow cytometry analyses, size measurements, and serum stability studies were performed to characterize the GO conjugates before in vivo investigations in 4T1 murine breast tumor-bearing mice, which were further validated by histology. TRC105-conjugated GO was specific for CD105 in cell culture. 66Ga-NOTA-GO-TRC105 and 66Ga-NOTA-GO exhibited excellent stability in complete mouse serum. In 4T1 tumor-bearing mice, these GO conjugates were primarily cleared through the hepatobiliary pathway. 66Ga-NOTA-GO-TRC105 accumulated quickly in the 4T1 tumors and tumor uptake remained stable over time (3.8 ± 0.4, 4.5 ± 0.4, 5.8 ± 0.3, and 4.5 ± 0.4 %ID/g at 0.5, 3, 7, and 24 h post-injection respectively; n = 4). Blocking studies with unconjugated TRC105 confirmed CD105 specificity of 66Ga-NOTA-GO-TRC105, which was corroborated by biodistribution and histology studies. Furthermore, histological examination revealed that targeting of NOTA-GO-TRC105 is tumor vasculature CD105 specific with little extravasation. Successful demonstration of in vivo tumor targeting with GO, along with the versatile chemistry of graphene-based nanomaterials, makes them suitable nanoplatforms for future biomedical research such as cancer theranostics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 33, Issue 16, June 2012, Pages 4147–4156
نویسندگان
, , , , , , , ,