کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
732299 1461566 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extreme learning machine approach for sensorless wind speed estimation
ترجمه فارسی عنوان
رویکرد دستگاه یادگیری شدید برای تخمین سرعت باد بدون سنسور
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی

Precise predictions of wind speed play important role in determining the feasibility of harnessing wind energy. In fact, reliable wind predictions offer secure and minimal economic risk situation to operators and investors. This paper presents a new model based upon extreme learning machine (ELM) for sensor-less estimation of wind speed based on wind turbine parameters. The inputs for estimating the wind speed are wind turbine power coefficient, blade pitch angle, and rotational speed. In order to validate authors compared prediction of ELM model with the predictions with genetic programming (GP), artificial neural network (ANN) and support vector machine with radial basis kernel function (SVM-RBF). This investigation analyzed the reliability of these computational models using the simulation results and three statistical tests. The three statistical tests includes the Pearson correlation coefficient, coefficient of determination and root-mean-square error. Finally, this study compared predicted wind speeds from each method against actual measurement data. Simulation results, clearly demonstrate that ELM can be utilized effectively in applications of sensor-less wind speed predictions. Concisely, the survey results show that the proposed ELM model is suitable and precise for sensor-less wind speed predictions and has much higher performance than the other approaches examined in this study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechatronics - Volume 34, March 2016, Pages 78–83
نویسندگان
, , , , , ,