| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7339050 | 1476116 | 2016 | 31 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Measuring structural similarity in large online networks
												
											ترجمه فارسی عنوان
													اندازه گیری شباهت ساختاری در شبکه های بزرگ آنلاین 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												دو طرفه، ژاکارد، شباهت کوزین توییتر، پیگیری مشترک،
																																							
												موضوعات مرتبط
												
													علوم انسانی و اجتماعی
													روانشناسی
													روانشناسی اجتماعی
												
											چکیده انگلیسی
												Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Social Science Research - Volume 59, September 2016, Pages 97-106
											Journal: Social Science Research - Volume 59, September 2016, Pages 97-106
نویسندگان
												Yongren Shi, Michael Macy, 
											