| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7347054 | 1476497 | 2018 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Forecasting the aggregate oil price volatility in a data-rich environment
												
											ترجمه فارسی عنوان
													پیش بینی نرخ نوسان قیمت نفت در یک محیط غنی با داده 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													علوم انسانی و اجتماعی
													اقتصاد، اقتصادسنجی و امور مالی
													اقتصاد و اقتصادسنجی
												
											چکیده انگلیسی
												This paper explores the effectiveness of a large set of indicators in forecasting crude oil price volatility, including uncertainty and market sentiment, macroeconomic indicators, and technical indicators. Using the OLS, LASSO regression, and various combination forecasts, we obtain several noteworthy findings. First, we determine which indicators most effectively forecast oil price volatility. Specifically, the uncertainty index is notable. Second, in general, combination strategies and LASSO produce statistically and economically significant forecasts. Third, the combined and LASSO strategies perform considerably better during recessions than expansions. Overall, our study provides which indicators and strategies can improve forecasting accuracy in the oil market.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Economic Modelling - Volume 72, June 2018, Pages 320-332
											Journal: Economic Modelling - Volume 72, June 2018, Pages 320-332
نویسندگان
												Feng Ma, Jing Liu, M.I.M. Wahab, Yaojie Zhang, 
											