| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7350961 | 1476693 | 2018 | 12 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Forecasting the prices of crude oil: An iterated combination approach
												
											ترجمه فارسی عنوان
													پیش بینی قیمت نفت خام: روش ترکیبی تکرار شده 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													انرژی (عمومی)
												
											چکیده انگلیسی
												In this paper, we employ an iterated combination approach to examine oil price predictability with a large set of predictors, including 18 macroeconomic variables and 18 technical indicators. The empirical results show that iterated combination approach outperforms the standard combination approach for both in- and out-of-sample. Specifically, the iterated combination forecasts always yield significantly larger out-of-sample R2 values and higher success ratios than the corresponding standard combination forecasts. Furthermore, we document that the results are robust to various settings, including alternative proxies of crude oil prices, three predictor sets, different forecasting windows, and various standard combination approaches. From an asset allocation perspective, we measure the economic value of the iterated combination approaches, where the leverage of oil futures trading is considered. The results suggest that the more accurate forecasts of the iterated combination approaches can generate substantially larger certainty equivalent return (CER) gains for a mean-variance investor in practice.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Economics - Volume 70, February 2018, Pages 472-483
											Journal: Energy Economics - Volume 70, February 2018, Pages 472-483
نویسندگان
												Yaojie Zhang, Feng Ma, Benshan Shi, Dengshi Huang, 
											