کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7356831 | 1478388 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Facilitating an expectation-maximization (EM) algorithm to solve an integrated choice and latent variable (ICLV) model with fully correlated latent variables
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم انسانی و اجتماعی
مدیریت، کسب و کار و حسابداری
بازاریابی و مدیریت بازار
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that estimating the parameters of an integrated choice and latent variable (ICLV) model is not a trivial undertaking. The log-likelihood of an ICLV model cannot be evaluated analytically, and can only be evaluated by a simulation that requires large numbers of sample draws. While conducting simulation-based model estimations, researchers often encounter an estimation failure. Sohn (2017) suggests a novel estimation method to circumvent the problem by using an expectation-maximization algorithm (EM). However, a drawback of this method continues to be the requirement of a huge amount of computer memory to deal with an augmented covariance matrix. In the present study, this problem was overcome by connecting each latent variable in a structural equation to all individual specific variables. This restriction did not hamper the utility of an ICLV model during empirical experimentation. The main contribution of this study is to introduce a simple method devised to solve large-scale ICLV models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Choice Modelling - Volume 26, March 2018, Pages 64-79
Journal: Journal of Choice Modelling - Volume 26, March 2018, Pages 64-79
نویسندگان
Dasol Chae, Jaeyoung Jung, Keemin Sohn,